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a b s t r a c t

Highly transparent Ho:YAG ceramic was successfully fabricated by solid-state reaction and vacuum sin-
tering. The optical properties, the microstructure and the laser performance of the Ho:YAG ceramic were
investigated. Ho:YAG ceramic with the average grain size of ∼15 �m was obtained by sintering at 1760 ◦C
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vailable online 15 July 2010
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for 20 h. The in-line transmittances in the visible region and the infrared region were both over 80%. No
pores, impurities and secondary phases were detected in the grains and at the grain boundaries. The
1 at.% Ho:YAG ceramic slab (1.5 mm × 10 mm × 18 mm) was end-pumped by a Tm-YLF laser at 1910 nm.
The maximum output power of 1.95 W was yielded with a slope efficiency of 44.19% and Tm to Ho
optical–optical efficiency was 24% at 2091 nm.

© 2010 Elsevier B.V. All rights reserved.

aser performance

. Introduction

In recent years, an increasing interest has been focused on the
olid-state lasers operating in the eye-safe spectral region near
�m because of their varied applications such as optical commu-
ications, coherent laser radar, atmospheric sensing and medical
quipment [1–4]. Also, high-power quasi-continuous wave (QCW)
�m lasers are efficient pump sources of optical parametric oscil-

ators (OPOs) and optical parametric amplifiers (OPAs).
Currently two technologies are in wide use—diode-pumped

.9 �m thulium (Tm3+) and 2.1 �m holmium (Ho3+) lasers. The per-
ormance of the Tm3+ in Y3Al5O12 (YAG)/YAlO3 (YAP)/Gd3Ga5O12
GGG) single crystal has been widely studied and the laser opera-
ion has been successfully realized [4–7]. Diode-pumped Tm:YAG
eramic laser also has been studied in our previous work [8]. Ho3+

asers are used as pump sources for non-linear optics to generate
id-infrared radiation in the spectral range of 3–5 �m, for lidar

pplications as their emission wavelengths are less affected by the
tmospheric water vapor absorption than those of Tm3+ lasers, in

edicine and for plastic welding [9]. Moreover, direct resonant

umping Ho 5I7 manifold offers the advantages of high slope effi-
iency (70% in Ho:YLiF4) [10], minimal heating due to low quantum
efect of less than 10% between pump and laser.
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The performance of the Ho:YAG single crystal has been
widely studied [11,12] and the laser operation has been suc-
cessfully realized [13–18]. Holmium-doped yttrium aluminum
garnet (Ho:YAG) ceramic is the promising material of choice
for 2.1 �m applications due to its well-known excellent thermo-
mechanical properties and advantages compared with Ho:YAG
single crystal (for example: ease of fabrication, less cost, mass
production, feasibility of large size, high holmium concentra-
tion, etc.). The laser performance of Ho:YAG ceramic has been
reported in Dr. Cheng’s work with the specimen we provided
[19]. And to the best of our knowledge, fabrication and proper-
ties of highly transparent Ho:YAG ceramic has not been reported
yet.

Ho:YAG does not have any suitable absorption feature in the
traditional diode laser wavelength window of 785–980 nm, so that
Ho:YAG cannot be directly pumped by traditional diode lasers.
Using Tm-doped laser operating at approximate 1.9 �m direct res-
onant pumping Ho 5I7 manifold offers the advantages of high
quantum efficiency, minimal heating due to low quantum defect
between pump and laser of ∼10%, and reduced up-conversion
losses caused by Tm sensitized. Therefore, this approach has the
advantage of very low quantum defect heating with the result that
high lasing efficiencies are attainable.

Available room-temperature pump sources for Ho are the Tm

laser in the hosts YAG, YLiF4 (YLF), and YAP. The absorption spec-
trum of Tm:YLF falls within the emission spectrum of commercially
available laser diodes emitting peak of 792 nm. The emission spec-
trum of Tm:YLF matches well with the relatively broad absorption
spectrum of Ho:YAG. Therefore, Tm:YLF laser allows relatively low

dx.doi.org/10.1016/j.jallcom.2010.07.059
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:ybpan@mail.sic.ac.cn
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obtained.
The phase composition of the sample was identified by X-ray diffraction (Model

D/MAX-2550V, Rigaku, Tokyo, Japan). The sample mirror-polished on both surfaces
was used to measure optical transmittance and absorption spectra (Model U-2800
Spectrophotometer, Hitachi, Tokyo, Japan). For measuring the fluorescence spec-
Fig. 1. The scheme of the H

rightness diode pump sources to be used and efficiently pumping
o:YAG [20,21].

In this paper, highly transparent Ho:YAG ceramic was suc-
essfully fabricated by a simple solid-state reaction method and
acuum-sintering technology. The microstructure, the spectral
haracteristics and room-temperature laser actions of Tm-YLF laser
umped Ho:YAG ceramic in CW modes were reported in this
ork.

. Experimental procedures

.1. Ceramic fabrication

High-purity powders of �-Al2O3 (99.99%, Shanghai Wusong Chemical Co. Ltd.,
hanghai, China), Y2O3 (99.99%, Shanghai Yuelong New Materials Co. Ltd., Shang-
ai, China), and Ho2O3 (99.99%, Conghua Jianfeng Rare-Earth Co. Ltd., Guangzhou,
hina) were used as starting materials. These powders were blended according to
he stoichiometric ratio of 1 at.% Ho:YAG and ball-milled with high-purity corun-
um balls for in ethanol 10 h, with a binder and addition of 0.6 wt% tetraethyl
rthosilicate (TEOS) as a sintering aid. Then, the alcohol solvent was removed by
rying the milled slurry at 80 ◦C for 4 h in oven. The dried powder mixture was
round and sieved through 200-mesh screen. After removing the organic com-

onent by calcining at 500–800 ◦C for 2 h, the powder mixture was dry-pressed
ith a low pressure into Ф25 mm disks in a steel mold and then cold-isostatic-
ressed at 250 MPa into green bodies. Then the green bodies were vacuum-sintered
t 1760 ◦C for 20 h. After sintering, the specimens were annealed at 1400 ◦C for
h in air to relieve internal stresses and fill oxygen vacancies formed during

Fig. 2. XRD patterns of pure YAG and Ho:YAG samples.
ceramic laser experiment.

the vacuum-sintering process. Finally, highly transparent Ho:YAG ceramics were
Fig. 3. The EPMA micrograph of the fractured surface (a) and the high-resolution
TEM micrograph (HRTEM) of the grain boundary (b) of the Ho:YAG ceramic.



W.X. Zhang et al. / Journal of Alloys and Compounds 506 (2010) 745–748 747

F
i

t
6
p
T
e
J

2

o
H
a
e
w
1
a
w
t

3

a
s
T
t
c
c
b

ig. 4. The transmittance spectrum of mirror-polished 1 at.% Ho:YAG sample. The
nset picture is the appearance of the sample.

rum (Model Fluorolog-3, Jobin Yvon, Paris, France), the specimen was excited at
40 nm by the flash lamp. The microstructure of the fractured surface of the sam-
le was observed by electron probe micro-analyzer (EPMA, Model JXA-8100, JEOL,
okyo, Japan). The microstructure of grain boundary was characterized by a field
mission transmission electron microscopy (FETEM, Model EM 2100, JEOL, Tokyo,
apan).

.2. Laser experiment

Fig. 1 shows a schematic diagram of the experimental setup. The dimension
f the sample is 1.5 mm × 10 mm × 18 mm. Both surfaces (1.5 mm × 10 mm) of the
o:YAG ceramic were mirror-polished, parallel, and coated with an anti-reflection
t 1910 nm and 2100 nm. The sample was end-pumped by a Tm-YLF laser with an
mission wavelength of around 1910 nm. M1 and M2 were two rear mirrors which
ere set at 45◦ angle with the Tm-YLF laser beam and anti-reflection coated at

910 nm. The laser cavity consisted of two mirrors (M3 and M4), where M3 was
nti-reflection coated at 1910 nm and high-reflection coated at 2100 nm, and M4
as the output coupler (OC). The transmittance at 2090 nm and curvature radius of

he output coupler is 5%, 400 mm.

. Results and discussion

Fig. 2 displays the XRD patterns of Ho:YAG and pure YAG ceramic
t room temperature. The locations of Ho:YAG peaks are almost the
ame as that of pure YAG although the strength of peaks is different.

hat is because that the Ho:YAG ceramic has the same structure as
he pure YAG ceramic. The calculated lattice constant for Ho:YAG
eramic is 1.2009 nm, which is quite similar to that of pure YAG
eramic (the calculated lattice constant for pure YAG is 1.2010 nm),
ecause that Ho3+ takes the position of Y3+ in the lattice structure

Fig. 5. The effective emission cross-section of Tm:YLF (a) [13] and the absor
Fig. 6. The fluorescence spectrum of the 1 at.% Ho:YAG ceramic at room tempera-
ture.

and the radius of Ho3+ (89.4 pm) is just a little smaller than that of
Y3+ (90 pm).

The EPMA micrograph of fractured surface (Fig. 3(a)) and the
high-resolution TEM micrograph (HRTEM) of the grain boundary
(Fig. 3(b)) show the microstructure of the Ho:YAG ceramic. As
shown, the grain sizes are quite uniform and the average grain size
is about 15 �m. The grain boundary is clear and clean. There are
no pores, impurities and secondary phases in the grains and at the
grain boundary.

From the in-line transmittance spectrum in Fig. 4, we can see
that Ho:YAG laser wavelength (around 2.1 �m) is right in the
absorption band (1800–2100 nm), which indicates that Ho:YAG
laser has a self-absorption process. In this case, normally the Ho3+

doping levels should not be above 3% in the Ho:YAG laser material.
The inset picture is the appearance of the samples. The samples are
highly transparent and the thickness is 5 mm.

The emission spectrum of Tm:YLF (Fig. 5(a)) [22] coincides
well with the absorption spectrum of Ho:YAG transparent ceramic
(Fig. 5(b)). Both of the peak emission cross-section lines (1.880 and
1.907 �m) in Tm:YLF are well suited to pump Ho:YAG ceramic effi-
ciently. For this work, we use the 1.9 �m Tm:YLF line as a pump
source.

Fig. 6 is the room-temperature fluorescence spectrum excited by
the flash lamp. The emission region with a peak at 2091 nm is from

1800 nm to 2200 nm which comes from the transition 5I7 → 5I8 of
the 1% Ho:YAG ceramic. With the fluorescence spectrum, the sam-
ple was suitably coated and the laser experiment was well designed
in Fig. 1.

ption spectrum of the Ho:YAG ceramic from 1800 nm to 2200 nm (b).
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ig. 7. The laser output power versus the absorbed pump power (a) and the laser
pectrum (b) for the 1 at.% Ho:YAG ceramic.

To the best of our knowledge, highly transparent Ho:YAG
eramic is fabricated for the first time in this paper. The Ho:YAG
eramic slab was end-pumped by a Tm-YLF laser. The laser spec-
rum of the 1 at.% Ho:YAG ceramic is centered at 2091 nm, as shown
n Fig. 7(b). Fig. 7(a) illustrates the laser output power versus the
bsorbed pump power for the 1 at.% Ho:YAG ceramic. The maxi-
um laser output power of 1.95 W has been obtained with only

.7 W of absorbed Tm pump power. A linear fit to the data yielded
slope efficiency of 44.19% with a threshold of approximately

.3 W. The Tm:YLF to Ho:YAG optical-to-optical efficiency was 24%.

he slope efficiency and optic–optic transformation efficiency of
o:YAG ceramic yielded in this study are still lower than those
f Ho:YAG crystal (the slope efficiency and optic–optic transfor-
ation efficiency of Ho:YAG crystal are 57% and 38%, respectively

23]), however, with improvement of ceramic fabrication process

[
[
[

[
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and optical quality, Ho:YAG ceramic is a very promising substitute
for Ho:YAG crystal in the foreseeable future.

4. Conclusions

Highly transparent Ho:YAG ceramic with average grain size of
∼15 �m was obtained by solid-state reaction and vacuum sinter-
ing. The grain boundary was clean and no secondary phase was
observed. The 1 at.% Ho:YAG ceramic slab was end-pumped by a
Tm-YLF laser at 1910 nm. The maximum output power of 1.95 W
was obtained with a slope efficiency of 44.19% and Tm to Ho optical-
to-optical efficiency of 24% at 2091 nm. The results of the laser
experiment show that the quality of such kind of ceramics is good
enough to be used as a highly efficient laser material.
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